Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1859(11): 1191-1198, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251700

RESUMO

The heme­copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Prótons , Vibrio cholerae/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo
2.
Biochim Biophys Acta ; 1847(10): 1231-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116881

RESUMO

The C-family (cbb3) of heme-copper oxygen reductases are proton-pumping enzymes terminating the aerobic respiratory chains of many bacteria, including a number of human pathogens. The most common form of these enzymes contains one copy each of 4 subunits encoded by the ccoNOQP operon. In the cbb3 from Rhodobacter capsulatus, the enzyme is assembled in a stepwise manner, with an essential role played by an assembly protein CcoH. Importantly, it has been proposed that a transient interaction between the transmembrane domains of CcoP and CcoH is essential for assembly. Here, we test this proposal by showing that a genetically engineered form of cbb3 from Vibrio cholerae (CcoNOQP(X)) that lacks the hydrophilic domain of CcoP, where the two heme c moieties are present, is fully assembled and stable. Single-turnover kinetics of the reaction between the fully reduced CcoNOQP(X) and O2 are essentially the same as the wild type enzyme in oxidizing the 4 remaining redox-active sites. The enzyme retains approximately 10% of the steady state oxidase activity using the artificial electron donor TMPD, but has no activity using the physiological electron donor cytochrome c4, since the docking site for this cytochrome is presumably located on the absent domain of CcoP. Residue E49 in the hydrophobic domain of CcoP is the entrance of the K(C)-channel for proton input, and the E49A mutation in the truncated enzyme further reduces the steady state activity to less than 3%. Hence, the same proton channel is used by both the wild type and truncated enzymes.

3.
Proc Natl Acad Sci U S A ; 111(42): E4419-28, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288772

RESUMO

The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.


Assuntos
Proteínas de Bactérias/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Vibrio cholerae/enzimologia , Domínio Catalítico , Cobre/química , Citoplasma/metabolismo , Histidina/química , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/química , Conformação Proteica , Prótons , Espectrofotometria Ultravioleta , Análise Espectral Raman , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...